Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.756
1.
Sci Rep ; 14(1): 10647, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724510

This study aimed to evaluate the safety of Moringa by comparing the effects of different gavage doses of Moringa. The general behavior, body weight, food intake, blood indexes, serum biochemical indexes, and histopathology of rats were used to determine the safety threshold and to provide a reference for the further development and use of Moringa as animal feed. 40 Sprague Dawley rats were selected and given transoral gavage for 28 consecutive days. The T1, T2 and T3 groups were observed for general behavior, body weight, and food intake. Blood and serum biochemical indices were quantified, and histopathology was performed to evaluate the effect and safety of Moringa. The results of the toxicological test showed that (1) Only T1 groups experienced diarrhea. (2) The body weight and food intake of rats in each group were normal compared with the control group. (3) The hematological and serum biochemical indices of rats in the T1 group were significantly different from those of CK but were in the normal range; (4) The results of microscopic examination of the heart, liver, spleen, lung, and kidney of rats in each group were normal, but inflammation occurred in stomach and jejunum of rats in the T1 group, but not in the ileum. The gastrointestinal tract of rats in the T2 and T3 groups were normal. (5) No abnormal death occurred in any of the treatment groups.The results of this study revealed that gavage of Moringa homogenate at a dose of 6 g/kg BW can cause diarrhea in rats. Although there is no pathological effect on weight, food intake, blood and serum biochemical indicators in rats, there are pathological textures in the gastrointestinal tissue caused by diarrhea. Therefore, the safety threshold of Moringa homogenate should be ≤ 3 g/kg BW.


Body Weight , Moringa oleifera , Rats, Sprague-Dawley , Animals , Moringa oleifera/chemistry , Rats , Male , Body Weight/drug effects , Eating/drug effects , Female , Animal Feed/analysis , Diarrhea/chemically induced , Diarrhea/veterinary
2.
Trop Anim Health Prod ; 56(4): 160, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730050

The rearing of calves is an essential activity of a dairy system, as it impacts the future production of these animals. This study aims to evaluate the incidence of diarrhea, performance, and blood parameters of suckling calves that received mineral-vitamin supplementation in milk plus virginiamycin that was offered in milk (via the abomasum) or by esophageal tube (via the rumen). Twenty-seven calves were used, from the first week to 60 days of age, submitted to the following treatments: CONTROL, without supplementation; MILK, supplementation of 20 g of a mineral-vitamin complex with 100 mg of virginiamycin, diluted in milk; RUMEN, supplementation of 20 g of a mineral-vitamin complex diluted in milk and 100 mg of virginiamycin in gelatin capsules via an esophageal applicator. MILK and RUMEN calves had lower fecal consistency scoring, fewer days with scores 2 and 3 throughout the experimental period, and lower spending on medication compared to the CONTROL animals. Supplemented calves had higher fat and protein intake and reached feed intake of 600 g earlier than CONTROL animals, but did not differ in performance and hematological parameters. Supplementation with virginiamycin and vitamin-mineral complex for suckling calves reduced the incidence and days of diarrhea, and reduced medication costs, with no difference in performance, but the supplemented animals had higher initial protein and fat intake and reached targeted feed intake earlier to begin the weaning process.


Animal Feed , Cattle Diseases , Diarrhea , Dietary Supplements , Virginiamycin , Animals , Cattle , Dietary Supplements/analysis , Diarrhea/veterinary , Diarrhea/prevention & control , Diarrhea/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Incidence , Animal Feed/analysis , Virginiamycin/administration & dosage , Virginiamycin/pharmacology , Vitamins/administration & dosage , Animals, Suckling , Male , Female , Minerals/administration & dosage , Minerals/analysis , Milk/chemistry , Diet/veterinary
3.
Parasit Vectors ; 17(1): 199, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698452

BACKGROUND: Enteric parasitic infections remain a major public health problem globally. Cryptosporidium spp., Cyclospora spp. and Giardia spp. are parasites that cause diarrhea in the general populations of both developed and developing countries. Information from molecular genetic studies on the speciation of these parasites and on the role of animals as vectors in disease transmission is lacking in Ghana. This study therefore investigated these diarrhea-causing parasites in humans, domestic rats and wildlife animals in Ghana using molecular tools. METHODS: Fecal samples were collected from asymptomatic school children aged 9-12 years living around the Shai Hills Resource Reserve (tourist site), from wildlife (zebras, kobs, baboons, ostriches, bush rats and bush bucks) at the same site, from warthogs at the Mole National Park (tourist site) and from rats at the Madina Market (a popular vegetable market in Accra, Ghana. The 18S rRNA gene (18S rRNA) and 60-kDa glycoprotein gene (gp60) for Cryptosporidium spp., the glutamate dehydrogenase gene (gdh) for Giardia spp. and the 18S rDNA for Cyclospora spp. were analyzed in all samples by PCR and Sanger sequencing as markers of speciation and genetic diversity. RESULTS: The parasite species identified in the fecal samples collected from humans and animals included the Cryptosporidium species C. hominis, C. muris, C. parvum, C. tyzzeri, C. meleagridis and C. andersoni; the Cyclopora species C. cayetanensis; and the Gardia species, G. lamblia and G. muris. For Cryptosporidium, the presence of the gp60 gene confirmed the finding of C. parvum (41%, 35/85 samples) and C. hominis (29%, 27/85 samples) in animal samples. Cyclospora cayetanensis was found in animal samples for the first time in Ghana. Only one human sample (5%, 1/20) but the majority of animal samples (58%, 51/88) had all three parasite species in the samples tested. CONCLUSIONS: Based on these results of fecal sample testing for parasites, we conclude that animals and human share species of the three genera (Cryptosporidium, Cyclospora, Giardia), with the parasitic species mostly found in animals also found in human samples, and vice-versa. The presence of enteric parasites as mixed infections in asymptomatic humans and animal species indicates that they are reservoirs of infections. This is the first study to report the presence of C. cayetanensis and C. hominis in animals from Ghana. Our findings highlight the need for a detailed description of these parasites using high-throughput genetic tools to further understand these parasites and the neglected tropical diseases they cause in Ghana where such information is scanty.


Animals, Domestic , Animals, Wild , Cryptosporidiosis , Cryptosporidium , Cyclospora , Cyclosporiasis , Feces , Animals , Ghana/epidemiology , Cyclospora/genetics , Cyclospora/isolation & purification , Cyclospora/classification , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Feces/parasitology , Cyclosporiasis/epidemiology , Cyclosporiasis/parasitology , Cyclosporiasis/veterinary , Animals, Wild/parasitology , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/transmission , Humans , Child , Animals, Domestic/parasitology , Rats , DNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Giardiasis/veterinary , Giardiasis/parasitology , Giardiasis/epidemiology , Diarrhea/parasitology , Diarrhea/veterinary , Diarrhea/epidemiology , Phylogeny , Giardia/genetics , Giardia/isolation & purification , Giardia/classification
4.
NPJ Biofilms Microbiomes ; 10(1): 42, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697985

Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2-7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.


Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Gastrointestinal Microbiome , Swine Diseases , Weaning , Animals , Swine , Diarrhea/microbiology , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/prevention & control , Animal Feed , Feces/microbiology
5.
Vet Microbiol ; 293: 110100, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718527

Recent epidemiological studies have discovered that a lot of cases of porcine epidemic diarrhea virus (PEDV) infection are frequently accompanied by porcine kobuvirus (PKV) infection, suggesting a potential relationship between the two viruses in the development of diarrhea. To investigate the impact of PKV on PEDV pathogenicity and the number of intestinal lymphocytes, piglets were infected with PKV or PEDV or co-infected with both viruses. Our findings demonstrate that co-infected piglets exhibit more severe symptoms, acute gastroenteritis, and higher PEDV replication compared to those infected with PEDV alone. Notably, PKV alone does not cause significant intestinal damage but enhances PEDV's pathogenicity and alters the number of intestinal lymphocytes. These results underscore the complexity of viral interactions in swine diseases and highlight the need for comprehensive diagnostic and treatment strategies addressing co-infections.


Coinfection , Coronavirus Infections , Intestines , Kobuvirus , Lymphocytes , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/pathogenicity , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/virology , Coinfection/virology , Coinfection/veterinary , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Lymphocytes/virology , Kobuvirus/pathogenicity , Kobuvirus/genetics , Intestines/virology , Diarrhea/virology , Diarrhea/veterinary , Virus Replication , Gastroenteritis/virology , Gastroenteritis/veterinary , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology
6.
Front Cell Infect Microbiol ; 14: 1367385, 2024.
Article En | MEDLINE | ID: mdl-38628550

Introduction: Neonatal calf diarrhea (NCD) is one of the most common diseases in calves, causing huge economic and productivity losses to the bovine industry worldwide. The main pathogens include bovine rotavirus (BRV), bovine coronavirus (BCoV), and Enterotoxigenic Escherichia coli (ETEC) K99. Since multiple infectious agents can be involved in calf diarrhea, detecting each causative agent by traditional methods is laborious and expensive. Methods: In this study, we developed a one-step multiplex Real-Time PCR assay to simultaneously detect BRV, BCoV, and E. coli K99+. The assay performance on field samples was evaluated on 1100 rectal swabs of diseased cattle with diarrhea symptoms and compared with the conventional gel-based RT-PCR assay detect BRV, BCoV, and E. coli K99+. Results: The established assay could specifically detect the target pathogens without cross-reactivity with other pathogens. A single real-time PCR can detect ~1 copy/µL for each pathogen, and multiplex real-time PCR has a detection limit of 10 copies/µL. Reproducibility as measured by standard deviation and coefficient of variation were desirable. The triple real-time PCR method established in this study was compared with gel-based PT-PCR. Both methods are reasonably consistent, while the real-time PCR assay was more sensitive and could rapidly distinguish these three pathogens in one tube. Analysis of surveillance data showed that BRV and BCoV are major enteric viral pathogens accounting for calves' diarrhea in China. Discussion: The established assay has excellent specificity and sensitivity and was suitable for clinical application. The robustness and high-throughput performance of the developed assay make it a powerful tool in diagnostic applications and calf diarrhea research. ​.


Cattle Diseases , Enterotoxigenic Escherichia coli , Rotavirus , Animals , Cattle , Real-Time Polymerase Chain Reaction/veterinary , Reproducibility of Results , Diarrhea/diagnosis , Diarrhea/veterinary , Rotavirus/genetics , Cattle Diseases/diagnosis , Feces
7.
J Virol ; 98(5): e0021224, 2024 May 14.
Article En | MEDLINE | ID: mdl-38591886

Porcine rotaviruses (PoRVs) cause severe economic losses in the swine industry. P[7] and P[23] are the predominant genotypes circulating on farms, but no vaccine is yet available. Here, we developed a bivalent subunit PoRV vaccine using truncated versions (VP4*) of the VP4 proteins from P[7] and P[23]. The vaccination of mice with the bivalent subunit vaccine elicited more robust neutralizing antibodies (NAbs) and cellular immune responses than its components, even at high doses. The bivalent subunit vaccine and inactivated bivalent vaccine prepared from strains PoRVs G9P[7] and G9P[23] were used to examine their protective efficacy in sows and suckling piglets after passive immunization. The immunized sows showed significantly elevated NAbs in the serum and colostrum, and the suckling piglets acquired high levels of sIgA antibodies from the colostrum. Challenging subunit-vaccinated or inactivated-vaccinated piglets with homologous virulent strains did not induce diarrhea, except in one or two piglets, which had mild diarrhea. Immunization with the bivalent subunit vaccine and inactivated vaccine also alleviated the microscopic lesions in the intestinal tissues caused by the challenge with the corresponding homologous virulent strain. However, all the piglets in the challenged group displayed mild to watery diarrhea and high levels of viral shedding, whereas the feces and intestines of the piglets in the bivalent subunit vaccine and inactivated vaccine groups had lower viral loads. In summary, our data show for the first time that a bivalent subunit vaccine combining VP4*P[7] and VP4*P[23] effectively protects piglets against the diarrhea caused by homologous virulent strains.IMPORTANCEPoRVs are the main causes of diarrhea in piglets worldwide. The multisegmented genome of PoRVs allows the reassortment of VP4 and VP7 genes from different RV species and strains. The P[7] and P[23] are the predominant genotypes circulating in pig farms, but no vaccine is available at present in China. Subunit vaccines, as nonreplicating vaccines, are an option to cope with variable genotypes. Here, we have developed a bivalent subunit candidate vaccine based on a truncated VP4 protein, which induced robust humoral and cellular immune responses and protected piglets against challenge with homologous PoRV. It also appears to be safe. These data show that the truncated VP4-protein-based subunit vaccine is a promising candidate for the prevention of PoRV diarrhea.


Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Swine Diseases , Vaccines, Subunit , Animals , Swine , Rotavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Rotavirus Infections/prevention & control , Rotavirus Infections/veterinary , Rotavirus Infections/immunology , Rotavirus Infections/virology , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Mice , Female , Mice, Inbred BALB C , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Diarrhea/prevention & control , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/immunology , Genotype , Immunity, Cellular , Vaccination
8.
BMC Vet Res ; 20(1): 151, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643127

BACKGROUND: Numerous previous reports have demonstrated the efficacy of Lactic acid bacteria (LAB) in promoting growth and preventing disease in animals. In this study, Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were isolated from the feces of healthy rabbits, and both strains showed good probiotic properties in vitro. Two strains (108CFU/ml/kg/day) were fed to weaned rabbits for 21 days, after which specific bacterial infection was induced to investigate the effects of the strains on bacterial diarrhea in the rabbits. RESULTS: Our data showed that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 interventions reduced the incidence of diarrhea and systemic inflammatory response, alleviated intestinal damage and increased antibody levels in animals. In addition, Enterococcus faecium ZJUIDS-R1 restored the flora abundance of Ruminococcaceae1. Ligilactobaciiius animalis ZJUIDS-R2 up-regulated the flora abundance of Adlercreutzia and Candidatus Saccharimonas. Both down-regulated the flora abundance of Shuttleworthia and Barnesiella to restore intestinal flora balance, thereby increasing intestinal short-chain fatty acid content. CONCLUSIONS: These findings suggest that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were able to improve intestinal immunity, produce organic acids and regulate the balance of intestinal flora to enhance disease resistance and alleviate diarrhea-related diseases in weanling rabbits.


Bacterial Infections , Enterococcus faecium , Gastrointestinal Microbiome , Lactobacillales , Probiotics , Rabbits , Animals , Enterococcus faecium/physiology , Probiotics/therapeutic use , Probiotics/pharmacology , Diarrhea/prevention & control , Diarrhea/veterinary , Bacterial Infections/veterinary , Immunity
9.
Sci Rep ; 14(1): 9159, 2024 04 22.
Article En | MEDLINE | ID: mdl-38644372

Different strains of Escherichia coli that exhibit genetic characteristics linked to diarrhea pose a major threat to both human and animal health. The purpose of this study was to determine the prevalence of pathogenic Escherichia coli (E. coli), the genetic linkages and routes of transmission between E. coli isolates from different animal species. The efficiency of disinfectants such as hydrogen peroxide (H2O2), Virkon®S, TH4+, nano zinc oxide (ZnO NPs), and H2O2-based zinc oxide nanoparticles (H2O2/ZnO NPs) against isolated strains of E. coli was evaluated. Using 100 fecal samples from different diarrheal species (cow n = 30, sheep n = 40, and broiler chicken n = 30) for E. coli isolation and identification using the entero-bacterial repetitive intergenic consensus (ERIC-PCR) fingerprinting technique. The E. coli properties isolated from several diarrheal species were examined for their pathogenicity in vitro. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared spectrum (FT-IR), X-ray diffraction (XRD), zeta potential, and particle size distribution were used for the synthesis and characterization of ZnO NPs and H2O2/ZnO NPs. The broth macro-dilution method was used to assess the effectiveness of disinfectants and disinfectant-based nanoparticles against E. coli strains. Regarding the results, the hemolytic activity and Congo red binding assays of pathogenic E. coli isolates were 55.3 and 44.7%, respectively. Eleven virulent E. coli isolates were typed into five ERIC-types (A1, A2, B1, B2, and B3) using the ERIC-PCR method. These types clustered into two main clusters (A and B) with 75% similarity. In conclusion, there was 90% similarity between the sheep samples' ERIC types A1 and A2. On the other hand, 89% of the ERIC types B1, B2, and B3 of cows and poultry samples were comparable. The H2O2/ZnO NPs composite exhibits potential antibacterial action against E. coli isolates at 0.04 mg/ml after 120 min of exposure.


Chickens , Diarrhea , Disinfectants , Escherichia coli Infections , Escherichia coli , Hydrogen Peroxide , Zinc Oxide , Animals , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Hydrogen Peroxide/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Diarrhea/microbiology , Diarrhea/veterinary , Chickens/microbiology , Disinfectants/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Sheep , Cattle , Nanoparticles/chemistry , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Feces/microbiology , Metal Nanoparticles/chemistry
10.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612450

Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity of these strains. This study presents an innovative approach by isolating chicken-derived single-chain variable fragment antibodies (scFvs) specific to K88 and F18 fimbrial antigens from chickens immunized against these ETEC virulence factors. These scFvs effectively inhibited adhesion of K88 and F18 to porcine intestinal epithelial cells (IPEC-J2), with the inhibitory effect demonstrating a dose-dependent increase. Furthermore, a bispecific scFv was designed and expressed in Pichia pastoris. This engineered construct displayed remarkable potency; at a concentration of 25.08 µg, it significantly reduced the adhesion rate of ETEC strains to IPEC-J2 cells by 72.10% and 69.11% when challenged with either K88 or F18 alone. Even in the presence of both antigens, the adhesion rate was notably decreased by 57.92%. By targeting and impeding the initial adhesion step of ETEC pathogenesis, this antibody-based intervention holds promise as a potential alternative to antibiotics, thereby mitigating the risks associated with antibiotic resistance and residual drug contamination in livestock production. Overall, this study lays the groundwork for the development of innovative treatments against ETEC infections in piglets.


Antibodies, Bispecific , Enterotoxigenic Escherichia coli , Immunoglobulins , Single-Chain Antibodies , Animals , Swine , Single-Chain Antibodies/pharmacology , Chickens , Diarrhea/veterinary
11.
Adv Exp Med Biol ; 1446: 39-53, 2024.
Article En | MEDLINE | ID: mdl-38625524

The nutritional health of dogs and cats is important to pet owners around the world. Nutrition is inextricably linked to the health of the gastrointestinal system and vice versa. Gastrointestinal signs, such as vomiting, diarrhea, anorexia, or weight loss, are one of the most common reasons that dog and cat owners make non-routine appointments with veterinarians. Those patients are evaluated systematically to identify and/or rule out the causes of the symptoms. Some causes of chronic diarrhea are within the gastrointestinal tract while others are secondary to pathogenic factors outside the digestive system. Some useful biomarkers of chronic intestinal disease (enteropathy) exist in serum and feces. After determination that the clinical signs are due to primary gastrointestinal disease and that there is no parasitism, specific diets are used for at least two weeks. There are several types of diets for pets with chronic enteropathies. There are limited ingredient diets and hydrolyzed protein diets with reduced levels of allergens. There are also highly digestible and fiber-enhanced diets. Some diets contain probiotics and/or prebiotics. If symptoms do not improve and the patient is stable, a diet from a different class may be tried. For chronic enteropathies, the prognosis is generally good for symptom resolution or at least improvement. However, if interventions with novel diets do not ameliorate the symptoms of chronic enteropathy, then antibiotic, anti-inflammatory, or immunosuppressant therapy or further, more invasive diagnostics such as taking an intestinal biopsy, may be indicated. Pancreatitis is a common gastrointestinal disease in dogs and cats and patients may present with mild to severe disease. Many patients with mild to moderate disease can be successfully treated with early supportive care, including feeding a low-fat diet. A novel pharmaceutical, fuzapladib (Panoquell-CA1) looks very promising for treating more severe forms of acute pancreatitis in dogs. Maintenance on a low-fat diet may prevent pancreatitis in at-risk dogs. Future advances in medicine will allow pet owners and veterinarians to use dietary management to maximize the health of their dogs and cats.


Cat Diseases , Dog Diseases , Gastrointestinal Diseases , Inflammatory Bowel Diseases , Pancreatitis , Cats , Dogs , Humans , Animals , Cat Diseases/diagnosis , Cat Diseases/therapy , Acute Disease , Dog Diseases/diagnosis , Dog Diseases/therapy , Diet , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/therapy , Gastrointestinal Diseases/veterinary , Diarrhea/diagnosis , Diarrhea/therapy , Diarrhea/veterinary
12.
BMC Vet Res ; 20(1): 134, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570774

BACKGROUND: Porcine acute diarrhea syndrome coronavirus (SADS-CoV) is one of the novel pathogens responsible for piglet diarrhea, contributing to substantial economic losses in the farming sector. The broad host range of SADS-CoV raises concerns regarding its potential for cross-species transmission. Currently, there are no effective means of preventing or treating SADS-CoV infection, underscoring the urgent need for identifying efficient antiviral drugs. This study focuses on evaluating quercetin as an antiviral agent against SADS-CoV. RESULTS: In vitro experiments showed that quercetin inhibited SADS-CoV proliferation in a concentration-dependent manner, targeting the adsorption and replication stages of the viral life cycle. Furthermore, quercetin disrupts the regulation of the P53 gene by the virus and inhibits host cell cycle progression induced by SADS-CoV infection. In vivo experiments revealed that quercetin effectively alleviated the clinical symptoms and intestinal pathological damage caused by SADS-CoV-infected piglets, leading to reduced expression levels of inflammatory factors such as TLR3, IL-6, IL-8, and TNF-α. CONCLUSIONS: Therefore, this study provides compelling evidence that quercetin has great potential and promising applications for anti- SADS-CoV action.


Alphacoronavirus , Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Coronavirus/genetics , Quercetin/pharmacology , Quercetin/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea/veterinary , Swine Diseases/drug therapy
13.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38629856

Frequent incidence of postweaning enterotoxigenic Escherichia coli (ETEC) diarrhea in the swine industry contributes to high mortality rates and associated economic losses. In this study, a combination of butyric, caprylic, and capric fatty acid monoglycerides was investigated to promote intestinal integrity and host defenses in weanling pigs infected with ETEC. A total of 160 pigs were allotted to treatment groups based on weight and sex. Throughout the 17-d study, three treatment groups were maintained: sham-inoculated pigs fed a control diet (uninfected control [UC], n = 40), ETEC-inoculated pigs fed the same control diet (infected control [IC], n = 60), and ETEC-inoculated pigs fed the control diet supplemented with monoglycerides included at 0.3% of the diet (infected supplemented [MG], n = 60). After a 7-d acclimation period, pigs were orally inoculated on each of three consecutive days with either 3 mL of a sham-control (saline) or live ETEC culture (3 × 109 colony-forming units/mL). The first day of inoculations was designated as 0 d postinoculation (DPI), and all study outcomes reference this time point. Fecal, tissue, and blood samples were collected from 48 individual pigs (UC, n = 12; IC, n = 18; MG, n = 18) on 5 and 10 DPI for analysis of dry matter (DM), bacterial enumeration, inflammatory markers, and intestinal permeability. ETEC-inoculated pigs in both the IC and MG groups exhibited clear signs of infection including lower (P < 0.05) gain:feed and fecal DM, indicative of excess water in the feces, and elevated (P < 0.05) rectal temperatures, total bacteria, total E. coli, and total F18 ETEC during the peak-infection period (5 DPI). Reduced (P < 0.05) expression of the occludin, tumor necrosis factor α, and vascular endothelial growth factor A genes was observed in both ETEC-inoculated groups at the 5 DPI time point. There were no meaningful differences between treatments for any of the outcomes measured at 10 DPI. Overall, all significant changes were the result of the ETEC infection, not monoglyceride supplementation.


Infection caused by the bacterium known as enterotoxigenic Escherichia coli (ETEC) is a common disruptor of weaned pigs' health, leading to economic losses for the producers. To determine if nutritional supplementation could help protect against these losses, weaned pigs were assigned to one of three treatments: 1) uninfected and fed a standard nursery pig diet, 2) infected with ETEC and fed the same standard diet, or 3) infected with ETEC and fed the standard diet supplemented with a combination of butyric, caprylic, and capric fatty acid monoglycerides. Growth performance was tracked throughout the 17-d study and health outcomes were measured at the peak and resolution of ETEC infection. At the peak-infection time point, pigs that were infected with ETEC had lower fecal moisture content, greater fecal bacterial concentrations, and elevated body temperatures compared with uninfected pigs. Additionally, infection reduced expression of genes related to inflammation, angiogenesis, and the intestinal barrier during the peak-infection period. Overall, all significant changes were the result of the ETEC infection, and there were no meaningful differences observed between the different treatments.


Animal Feed , Dietary Supplements , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Monoglycerides , Swine Diseases , Animals , Swine , Swine Diseases/microbiology , Swine Diseases/prevention & control , Escherichia coli Infections/veterinary , Escherichia coli Infections/prevention & control , Enterotoxigenic Escherichia coli/physiology , Male , Female , Animal Feed/analysis , Diet/veterinary , Intestines/microbiology , Diarrhea/veterinary , Diarrhea/microbiology , Feces/microbiology , Weaning
14.
Can J Vet Res ; 88(2): 38-44, 2024 Apr.
Article En | MEDLINE | ID: mdl-38595949

Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.


Escherichia coli entérotoxinogènes (ETEC) est un type important de bactéries pathogènes qui cause de la diarrhée chez les porcs. L'objectif de l'étude était de préparer un nouveau vaccin tétravalent pour prévenir efficacement la diarrhée causée par E. coli chez les porcelets. Afin de réaliser la production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB, les caractéristiques biologiques, la stabilité, les conditions de conservation, et la sécurité de la souche recombinante (BL21(DE3)(pXKKSL4) ont été étudiées et l'efficacité du vaccin et la dose immunitaire minimum ont été mesurées. Les résultats indiquent que les caractéristiques biologiques, l'expression des protéines cibles, et l'immunogénicité de la 1ère à la 10e génération de la souche étaient stables. Ainsi, la génération germinale de base a été établie de manière préliminaire comme étant de la 1ère à la 10e générations. Les résultats des tests d'efficacité ont démontré que le taux de protection immunitaire pouvait atteindre 90 % avec une attaque au moyen de 1 dose léthale minimale (MLD) d'une souche virulente chez les souris. L'immunogénicité était stable et la dose immunitaire minimum était de 0,1 mL par souris. Nos travaux ont démontré que le vaccin génétiquement élaboré développé de cette façon pourrait prévenir la diarrhée chez les porcelets causée par des E. coli entérotoxigénique via les adhésines et les entérotoxines. Afin d'atteindre la production industrielle de ce vaccin aussitôt que possible, nous avons mené des tests immunologiques et de la recherche sur le processus de production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB. Les résultats de la présente étude fournissent des données scientifiques expérimentales pour la production commerciale de vaccins et jettent une base solide pour leur production industrielle.(Traduit par Docteur Serge Messier).


Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Rodent Diseases , Swine Diseases , Animals , Swine , Mice , Enterotoxins , Vaccines, Combined , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Diarrhea/microbiology , Escherichia coli Proteins/genetics , Vaccines, Inactivated , Antibodies, Bacterial , Swine Diseases/microbiology
15.
Mol Biol Rep ; 51(1): 494, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38581525

BACKGROUND: Escherichia coli (E. coli) serves as a common indicator of gut microbiota and is utilized for monitoring antimicrobial resistance determinants in food-producing animals. This study aimed to investigate antimicrobial resistance patterns in virulence gene-positive E. coli isolates obtained from 340 healthy and diarrheic calves. METHODS AND RESULTS: A total of 340 fecal swab samples were obtained from diarrheic (n = 170) and healthy (n = 170) calves for 12 months from different farms in Kerman, Iran. The samples were phenotypically analyzed to detect E. coli isolates and antibiotic resistance. Also, antimicrobial resistance genes, diarrheagenic E. coli pathotypes, and phylogenetic background were screened by PCR. Fifteen percent (51/340) of E. coli isolates were positive for at least one of the examined virulence genes (VGs); the prevalence of VGs in E. coli isolates from healthy calves (36/170; 21.17%) was higher than that in diarrheic cases (15/170; 8.82%). Out of the 51 VG-positive isolates, six pathotypes including Shiga toxin-producing E. coli (STEC; 27.45%), enterotoxigenic E. coli (ETEC; 23.52%), enterohemorrhagic E. coli (EHEC; 19.6%), necrotoxigenic E. coli (NTEC; 19.6%), enteropathogenic E. coli (EPEC; 15.68%), enteroinvasive E. coli (EIEC; 1.96%) and three hybrid pathotypes including ETEC/STEC, ETEC/EHEC, and STEC/EIEC were detected among the strains. Antimicrobial resistance (AR) was observed in 98.03% of the VG-positive isolates, which was the same for both healthy and diarrheic calves. The maximum prevalence rate of AR was found against trimethoprim/sulfamethoxazole (49.01%; 3/51), while the minimum prevalence rate was against gentamycin (5.88%; 25/51). Among the VG-positives, phylotype A was found to be the most prevalent followed by B1 and D phylotypes. CONCLUSIONS: The prevalence of VG-positive E. coli isolates was higher in healthy calves compared to diarrheic cases. AR was widespread among VG-positive isolates. These findings suggest that calves may serve as potential reservoirs of antimicrobial-resistant hybrid pathotypes of E. coli.


Anti-Infective Agents , Enteropathogenic Escherichia coli , Escherichia coli Infections , Humans , Animals , Cattle , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Iran/epidemiology , Phylogeny , Drug Resistance, Microbial , Diarrhea/epidemiology , Diarrhea/veterinary
16.
BMC Microbiol ; 24(1): 114, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575861

BACKGROUND: Diarrhea poses a major threat to bovine calves leading to mortality and economic losses. Among the causes of calf diarrhea, bovine rotavirus is a major etiological agent and may result in dysbiosis of gut microbiota. The current study was designed to investigate the effect of probiotic Limosilactobacillus fermentum (Accession No.OR504458) on the microbial composition of rotavirus-infected calves using 16S metagenomic analysis technique. Screening of rotavirus infection in calves below one month of age was done through clinical signs and Reverse Transcriptase PCR. The healthy calves (n = 10) were taken as control while the infected calves (n = 10) before treatment was designated as diarrheal group were treated with Probiotic for 5 days. All the calves were screened for the presence of rotavirus infection on each day and fecal scoring was done to assess the fecal consistency. Infected calves after treatment were designated as recovered group. Fecal samples from healthy, recovered and diarrheal (infected calves before sampling) were processed for DNA extraction while four samples from each group were processed for 16S metagenomic analysis using Illumina sequencing technique and analyzed via QIIME 2. RESULTS: The results show that Firmicutes were more abundant in the healthy and recovered group than in the diarrheal group. At the same time Proteobacteria was higher in abundance in the diarrheal group. Order Oscillospirales dominated healthy and recovered calves and Enterobacterials dominated the diarrheal group. Alpha diversity indices show that diversity indices based on richness were higher in the healthy group and lower in the diarrheal group while a mixed pattern of clustering between diarrheal and recovered groups samples in PCA plots based on beta diversity indices was observed. CONCLUSION: It is concluded that probiotic Limosilactobacillus Fermentum N-30 ameliorate the dysbiosis caused by rotavirus diarrhea and may be used to prevent diarrhea in pre-weaned calves after further exploration.


Cattle Diseases , Gastrointestinal Microbiome , Limosilactobacillus fermentum , Probiotics , Rotavirus Infections , Rotavirus , Animals , Cattle , Rotavirus/genetics , Rotavirus Infections/drug therapy , Rotavirus Infections/veterinary , Gastrointestinal Microbiome/genetics , Dysbiosis , Diarrhea/drug therapy , Diarrhea/veterinary , Feces/microbiology , Probiotics/therapeutic use , Cattle Diseases/drug therapy , Cattle Diseases/microbiology
17.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38653718

The poultry industry is a very important agricultural and industrial sector in Tunisia and Nigeria, with little information about occurrence of diarrheagenic Escherichia coli in the farmers and chickens. This study aimed to detect the prevalence of diarrheal E. coli in humans and poultry and to investigate plasmid-mediated quinolone resistance (PMQR) genes in both countries. Seventy-four isolates of E. coli were studied; nine different virulence genes were screened by PCR. Serotyping was performed only for pathotypes as well as the determining of antibiotic resistance profiles against 21 antibiotics. PMQR genes were investigated by PCR. EAEC was the most abundant pathotype (37/74; 50%) in human and chicken isolates, whereas single EHEC and EPEC (1/74, 1.35%) pathotypes were detected in Tunisia and Nigeria, respectively. About 17 (45.95%) quinolones/fluoroquinolones-resistant isolates were detected, from which the following PMQR genes were detected: aac(6')-Ib-cr (8/17, 47.05%), qepA (6/17, 35.29%), qnrA + qnrB (2/17, 11.76%), and qnrS gene (1/17, 5.88%). Our findings highlight high occurrence of EAEC pathotype in Tunisia and Nigeria, more frequent than EPEC and EHEC. Additionally, all E. coli pathotypes isolated from different sources (humans, poultry) showed resistance to several antibiotics, which are in use as therapeutic choices in Tunisia and Nigeria.


Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Escherichia coli , Plasmids , Poultry Diseases , Quinolones , Animals , Chickens/microbiology , Quinolones/pharmacology , Tunisia , Nigeria , Plasmids/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Humans , Diarrhea/microbiology , Diarrhea/veterinary , Drug Resistance, Bacterial/genetics , Farmers , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Virulence Factors/genetics
18.
Vet Microbiol ; 293: 110090, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636177

Macleaya cordata was a kind of traditional herbal medicine, which may a potential substitute for antibiotics. However, the effects of Macleaya cordata on neonatal piglets have rarely been reported. In this study, three groups were designed, including normal saline (Control group, CON), 8 mg/mL Macleaya cordata extract (MCE group, MCE) and 5 mg/mL Chlortetracycline Hydrochloride (CCH group, CCH), to investigate the effects of MCE on growth performance, blood parameters, inflammatory cytokines, regenerating islet-derived 3 gamma (REG3γ) expression and the transcriptomes of neonatal piglets. The results showed that, compared with the control group, MCE significantly increased the average daily gain (p < 0.01); spleen index (p < 0.05) contents of IL-10, TGF-ß, IgG in serum and sIgA in the ileum mucus of neonatal piglets at 7 d and 21 d (p < 0.01). The diarrhoea incidence and serum TNF-α and IFN-γ contents of neonatal piglets at 7 d and 21 d were significantly decreased (p < 0.01). In addition, MCE significantly increased the mRNA expression of TGF-ß, IL-10, and REG3γ (p < 0.01) and significantly decreased the mRNA expression of IL-33, TNF-α and IFN-γ in the ileal mucosa of neonatal piglets at 21 d (p < 0.01). The differentially expressed genes and the signal pathways, related to cytokine generation and regulation, immunoregulation and inflammation were identified. In conclusion, MCE can significantly improve growth performance, reduce diarrhoea incidence, relieve inflammation, improve immune function, and improve disease resistance in neonatal piglets. MCE can be used as a potential substitute for antibiotics in neonatal piglets.


Animals, Newborn , Anti-Inflammatory Agents , Cytokines , Plant Extracts , Animals , Swine , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines/genetics , Cytokines/metabolism , Papaveraceae/chemistry , Swine Diseases/immunology , Diarrhea/veterinary , Diarrhea/drug therapy
19.
Virology ; 594: 110062, 2024 06.
Article En | MEDLINE | ID: mdl-38522136

Viral diarrhea is the predominant digestive tract sickness in piglings, resulting in substantial profit losses in the porcine industry. Porcine rotavirus A (PoRVA) and porcine epidemic diarrhea virus (PEDV) are the main causes of grave gastroenteritis and massive dysentery, especially in piglets. PoRVA and PEDV have high transmissibility, exhibit similar clinical symptoms, and frequently co-occur. Therefore, to avoid financial losses, a quick, highly efficient, objective diagnostic test for the prevention and detection of these diseases is required. Enzymatic recombinase amplification (ERA) is a novel technology based on isothermal nucleic acid amplification. It demonstrates high sensitivity and excellent specificity, with a short processing time and easy operability, compared with other in vitro nucleic acid amplification technologies. In this study, a dual ERA method to detect and distinguish between PEDV and PoRVA nucleic acids was established. The method shows high sensitivity, as the detection limits were 101 copies/µL for both viruses. To test the usefulness of this method in clinical settings, we tested 64 swine clinical samples. Our results were 100% matched with those acquired using a commercially available kit. Therefore, we have successfully developed a dual diagnostic ERA nucleic acids method for detecting and distinguishing between PEDV and PoRVA.


Coronavirus Infections , Nucleic Acids , Porcine epidemic diarrhea virus , Rotavirus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Recombinases/genetics , Swine Diseases/diagnosis , Sensitivity and Specificity , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Diarrhea/diagnosis , Diarrhea/veterinary
20.
Pol J Vet Sci ; 27(1): 143-146, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38511679

Porcine epidemic diarrhea (PED) is a disease extremely harmful to pig health. Intramuscular and Houhai acupoint injections are the main immunization routes to prevent and control PED. This study aimed to evaluate the efficacy of these two routes in pregnant sows based on serum IgG, IgA, and neutralizing antibody levels. PED virus (PEDV) immunoprophylaxis with live-attenuated and inactivated vaccines was administered. The vaccinations for the intramuscular injections elevated IgG and neutralizing antibody levels more than Houhai acupoint injections at most timepoints after immunization. However, the anti-PEDV IgA antibodies induced by vaccination with the two immunization routes did not differ significantly. In conclusion, intramuscular injections are better than Houhai acupoint injections for PEDV vaccination of pregnant sows.


Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Pregnancy , Swine , Animals , Female , Antibodies, Viral , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Immunization/veterinary , Antibodies, Neutralizing , Vaccination/veterinary , Diarrhea/veterinary , Immunoglobulin G , Immunoglobulin A
...